Continuous Ranking of Zeros of Special Functions
نویسنده
چکیده
We reexamine and continue the work of J. Vosmanskyý [23] on the concept of continuous ranking of zeros of certain special functions from the point of view of the transformation theory of second order linear differential equations. This leads to results on higher monotonicity of such zeros with respect to the rank and to the evaluation of some definite integrals. The applications are to Airy, Bessel and Hermite functions.
منابع مشابه
Using Chebyshev polynomial’s zeros as point grid for numerical solution of nonlinear PDEs by differential quadrature- based radial basis functions
Radial Basis Functions (RBFs) have been found to be widely successful for the interpolation of scattered data over the last several decades. The numerical solution of nonlinear Partial Differential Equations (PDEs) plays a prominent role in numerical weather forecasting, and many other areas of physics, engineering, and biology. In this paper, Differential Quadrature (DQ) method- based RBFs are...
متن کاملConvergence theorems of iterative approximation for finding zeros of accretive operator and fixed points problems
In this paper we propose and studied a new composite iterative scheme with certain control con-ditions for viscosity approximation for a zero of accretive operator and xed points problems in areflexive Banach space with weakly continuous duality mapping. Strong convergence of the sequencefxng dened by the new introduced iterative sequence is proved. The main results improve andcomplement the co...
متن کاملConvexity Properties of Special Functions and Their Zeros
Convexity properties are often useful in characterizing and nding bounds for special function and their zeros as well as in questions concerning the existence and uniqueness of zeros in certain intervals In this survey paper we describe some work related to the gamma function the q gamma function Bessel and cylinder functions and the Hermite function Introduction Many inequalities for special f...
متن کاملEnlarging Domain of Attraction for a Special Class of Continuous-time Quadratic Lyapunov Function Piecewise Affine Systems based on Discontinuous Piecewise
This paper presents a new approach to estimate and to enlarge the domain of attraction for a planar continuous-time piecewise affine system. Various continuous Lyapunov functions have been proposed to estimate and to enlarge the system’s domain of attraction. In the proposed method with a new vision and with the aids of a discontinuous piecewise quadratic Lyapunov function, the domain of attrac...
متن کاملA Relation between the Zeros of Different Two L-functions Which Have the Euler Product and Functional Equation
As automorphic L-functions or Artin L-functions, several classes of Lfunctions have Euler products and functional equations. In this paper we study the zeros of L-functions which have the Euler products and functional equations. We show that there exists some relation between the zeros of the Riemann zetafunction and the zeros of such L-functions. As a special case of our results, we find the r...
متن کامل